Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Ibrahim Abdul Razak, ${ }^{\text {a }}$ Anwar Usman, ${ }^{\text {a }}$ Hoong-Kun Fun, ${ }^{\text {a* }}$ Bohari M. Yamin ${ }^{\text {b }}$ and Wooi Keat Goh ${ }^{\text {b }}$
${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.051$
$w R$ factor $=0.142$
Data-to-parameter ratio $=21.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Dichlorobis(3,4,5,6-tetrahydropyrimidinium-2-thiolato-S)cobalt(II)

In the title compound, $\left[\mathrm{CoCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$, the coordination around the Co atom is slightly distorted tetrahedral, with an average angle of $109.46(4)^{\circ}$. Intermolecular interactions between the N and Cl atoms result in interconnected twodimensional molecular network ribbons throughout the structure.

Comment

Continuing our interest in the diverse complexing behaviour of cobalt complexes with monothione ligands, a crystal of the title compound, (I), has been studied. Earlier work has shown that 1-methylimidazolidine-2 3 H)-thione (meimt) gives rise to complexes with the molecular formula $\mathrm{Co}(\text { meimt })_{4}\left(\mathrm{NO}_{3}\right)_{2} \cdot-$ $\mathrm{H}_{2} \mathrm{O}$ in ethanol solvent and $\mathrm{Co}(\text { meimt })_{2}\left(\mathrm{NO}_{3}\right)_{2}$ in ethyl acetate solvent (Raper \& Nowell, 1980); a perchlorate has also been reported, viz. $\left[\mathrm{Co}(\text { meimt })_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (Raper \& Nowell, 1979).

(I)

The bond lengths and angles of the ligands in (I) are comparable with those reported for dichlorotetrakis(trimethylenethiourea)nickel(II) (Luth \& Truter, 1968). The Co atom is tetrahedrally coordinated by two Cl atoms and two S atoms (Fig. 1). The angles around the Co atom are in the range 97.45 (3)-117.17 (4) ${ }^{\circ}$, with an average of $109.46(4)^{\circ}$, implying that the tetrahedron is slightly distorted.

In the crystal, all the N atoms are involved in intramolecular and intermolecular interactions with the Cl atoms. Atoms N1 and N 4 form intramolecular interactions, whereas atoms N 3 and N 2 form intermolecular interactions. The intermolecular interactions between N 2 and $\mathrm{Cl} 2(x, 1+y, z)$ form molecular ribbons along the b axis, stacking along the a axis (Fig. 2). The other intermolecular interactions between N 3 and $\mathrm{Cl} 2(x$, $\left.1-y, \frac{1}{2}+z\right)$ interconnect these ribbons into a two-dimensional molecular network throughout the structure.

Experimental

2.4 g of propylenethiourea (20 mmol) was added to a solution of cobalt(II) chloride ($1.3 \mathrm{~g}, 10 \mathrm{mmol}$) in acetonitrile (20 ml). The mixture was stirred at ambient temperature for 30 min . After stirring, the solution was poured into crystal dishes and covered with alumi-

Received 28 September 2001
Accepted 9 October 2001
Online 13 October 2001

Figure 1
The structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
Packing diagram of the two-dimensional network, viewed down the a axis
nium foil to allow the solvent to evaporate. After a few weeks, blue crystals were obtained; these were washed with hexane and, after drying, a suitable single-crystal was selected for X-ray structure determination.

Crystal data

$\left[\mathrm{CoCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$
$M_{r}=362.20$
Monoclinic, $C 2 / c$
$a=32.0245$ (14) \AA
$b=7.1329$ (3) \AA
$c=14.6141$ (6) \AA
$\beta=116.864$ (1) ${ }^{\circ}$
$V=2978.0(2) \AA^{3}$
$Z=8$
$D_{x}=1.616 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7650 reflections
$\theta=1.4-29.5^{\circ}$
$\mu=1.78 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Slab, blue
$0.46 \times 0.24 \times 0.16 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer
ω scans
Absorption correction: empirical (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.496, T_{\max }=0.764$
9648 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.142$
$S=0.98$
3397 reflections
155 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0748 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.82 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.03 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0033 (4)

Table 1

Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{Cl} 1$	$2.230(1)$	$\mathrm{N} 2-\mathrm{C} 4$	$1.468(5)$
$\mathrm{Co} 1-\mathrm{Cl} 2$	$2.282(1)$	$\mathrm{N} 3-\mathrm{C} 5$	$1.315(4)$
$\mathrm{Co} 1-\mathrm{S} 1$	$2.313(1)$	$\mathrm{N} 3-\mathrm{C} 6$	$1.463(4)$
$\mathrm{Co} 1-\mathrm{S} 2$	$2.319(1)$	$\mathrm{N} 4-\mathrm{C} 5$	$1.322(3)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.734(3)$	$\mathrm{N} 4-\mathrm{C} 8$	$1.456(4)$
$\mathrm{S} 2-\mathrm{C} 5$	$1.726(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.483(6)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.312(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.498(6)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.470(4)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.512(5)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.320(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.494(5)$
$\mathrm{Cl} 1-\mathrm{Co} 1-\mathrm{Cl} 2$	$107.97(4)$	$\mathrm{Cl} 1-\mathrm{Co} 1-\mathrm{S} 2$	$117.17(4)$
$\mathrm{Cl} 1-\mathrm{Co} 1-\mathrm{S} 1$	$110.43(4)$	$\mathrm{Cl} 2-\mathrm{Co} 1-\mathrm{S} 2$	$110.17(3)$
$\mathrm{Cl} 2-\mathrm{Co} 1-\mathrm{S} 1$	$113.55(4)$	$\mathrm{S} 1-\mathrm{Co} 1-\mathrm{S} 2$	$97.45(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{Cl} 2$	0.86	2.45	$3.263(3)$	158
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{C} 1$	0.86	2.53	$3.358(3)$	161
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{C} 22^{\mathrm{i}}$	0.86	2.64	$3.483(3)$	167
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{C} 22^{\mathrm{ii}}$	0.86	2.50	$3.353(3)$	171

Symmetry codes: (i) $x, 1+y, z$; (ii) $x, 1-y, \frac{1}{2}+z$.

After checking their presence in a difference map, all the H atoms were geometrically fixed and allowed to ride on their attached atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors would like to thank the Malaysian Government, Universiti Sains Malaysia and Universiti Kebangsaan Malaysia for research grants No. 305/PFIZIK/610961 and 09-02-02-0163, respectively. AU thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

References

Luth, H. \& Truter, M. R. (1968). J. Chem. Soc. A, pp. 1879-1886.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Raper, E. S. \& Nowell, I. W. (1979). Acta Cryst. B35, 1600.
Raper, E. S. \& Nowell, I. W. (1980). Inorg. Chim. Acta, 43, 165-172.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

